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Abstract: Transient Analysis of Electrical machines is the cynosure of attention and the subject of utmost interest of most 
machine designers in their quest to improve machine reliability and achieve the perfect design. Stator being the static part of 
an induction machine is the seat of higher temperatures, Hence is more liable to thermal failure than the rotor. Thus the study 
of thermal profile of the stator becomes more critical to identify the causes of failure in an induction machine. This paper 
presents a two dimensional transient heat flow in the stator using arch shaped elements in the࢘ −  ɵ plane of the cylindrical ࣂ
co-ordinate system of an 11 KW TEFC Squirrel Cage induction motor under the condition of DC dynamic braking for 
different values of stator currents injected in the stator of the aforesaid motor. 
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Introduction 
The thermal analysis of squirrel cage induction motor and the prediction of temperature rise within the magnetic core , 
insulation and conductors etc. is basically concerned with the determination of three dimensional  temperature distribution is 
produced by an intricate system of current carrying conductors which act as heat sources. The complexity and perplexity of a 
three dimensional problem can be reduced to a more simplified and tractable two-dimensional problem by a very simple 
assumption that two independent co-ordinates are required to describe or characterize the geometry of the cylindrical arch-
shaped element. For the problems of such nature we assume a arch shaped element or any other relevant geometry of unit 
thickness in theݎ −  .ɵ plane of the cylindrical co-ordinate systemߠ
The early designers and researchers have resorted to primitive methods like conformal mapping, resistance analog network 
etc to determine machine temperatures .These methods suffer from major disadvantages and are based on too many 
aspersions and assumptions which can raise questions on their veracity. Methods of a more popular and veracious nature are 
the finite difference and  the finite element method , while the former can provide an estimate of copper and  iron winding 
temperatures of the electrical machine , it is not as flexible as the latter. Use of finite element methods has been in vogue to 
predict transient as well as steady state temperatures among some researchers and is an established numerical analysis 
procedure for one seeking to find the thermal profile of an electrical machine.   
Traditionally, thermal studies of electrical machines have been carried out by analytical techniques, or by thermal network 
method [1], [2]. These techniques are useful when approximations to thermal circuit parameters and geometry are accepted. 
Numerical techniques based on either finite difference method [3], [4] or finite element methods [5]–[12] & [15]-[18] are 
more suitable for analysis of complex system. Rajagopal, M.S, Kulkarni, D.B, Seetharamu, K.N, and Ashwathnarayana P.A 
[13, 14] have carried out two-dimensional steady state and transient thermal analysis of TEFC machines using FEM. 
Compared to the finite difference method finite element method can easily handle complicated boundary configurations and 
discontinuities in material properties. 
The finite element method is first introduced for the steady state thermal analysis of the stator cores of large turbine-
generators by Armor and Chari [7]. However, their works are restricted to core packages far from the ends and they do not 
consider the influence of the stator coil heat. In 1980, Armor [9] employed arch-shaped finite elements to solve the transient 
heat flow in the rotor of large turbine-generators. Sarkar and Bhattacharya [15] also described a method based on arch-shaped 
finite elements with explicitly derived solution matrices for determining the thermal field of induction motors. 
However the finite element method has sparsely been attempted mostly because of its esoteric nature and computational 
complexity, use of finite element to solve the temperature distribution of the machine during DC dynamic braking has not 
been attempted before. 
In this paper a sincere attempt has been to study and find the finite element solution of the two-dimensional heat conduction 
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in cylindrical polar co-ordinates. The temperature distribution in the ݎ −  ɵ plane is determined by taking a strip of unitߠ
thickness in the stator bound by planes at mid-slot and mid-tooth divided into 30 arch-shaped elements and via explicit nature 
of matrices limits computer usage and provides a solution to the transient heating problem in stator 
This method is directly applicable to the study of temperature rise during DC dynamic braking of induction machines. There 
are various approaches of finite element a method out of which the method of weighted residuals or Galerkin’s Method is 
used is here because of its relative advantages. 
 
Two Dimensional Transient Heat Conduction Problems and its Formulation by Weighted 
Residual Approach 
For a solid in which heat is being generated internally at rate Q watt/mm3, consideration of conservation of energy produces 
the general transient heat conduction equation  
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In cylindrical polar co-ordinates, equation (1) can be expressed as  
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Where Pm, Cm are the material density and specific heat, Vr, VӨ are thermal conductivities in the radial, circumferential 
directions respectively. 
The solution of equation (2) can be obtained by assuming the general functional behavior of the dependent field variable in 
some way so as to approximately satisfy the given differential equation and boundary conditions. Substitution of this 
approximation into the original differential equation and boundary conditions then results in some error called a residual. 
This residual is required to vanish in some average sense over the entire solution domain. 
The approximate behavior of the potential function within each element is prescribed in terms of their nodal values and some 
weighting functions N1, N2, ……Such that 
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The weighting functions are strictly functions of the geometry and are termed shape functions. These shape functions 
determine the order of the approximating polynomials for the heat conduction problem. 
The required equation governing the behavior of an element is given by the expression. 
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Equation (4) can be written as  
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Where T0 is the temperature at the previous point in time and Δt is the time interval. 
Equation (5) expresses the desired averaging to the error or residual within the element boundaries, but it does not admit the 
influence of the boundary. Since we have made no attempt to choose the Ni so as to satisfy the boundary conditions, we must 
use integration by parts to introduce the influence of the natural boundary conditions. 
 
Arch Shape Functions 
Consider the arch-shaped element of Fig.1 formed by circle arcs radii a, b, radii inclined at an angle 2α.  
The shape functions can now be defined in terms of a set of non-dimensional co-ordinates by non-dimensionalising the   
cylindrical polar co-ordinates r, ө using 
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Fig 1. Two-dimensional arch-shaped prism element suitable for discretisation of induction motor stator 
 

 
 

Fig 2. The non-dimensional arch shaped element 
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The arch element with non-dimensional co-ordinates is shown in Fig. 2.  
The temperature at any point within the element be given in terms of its nodal temperatures by         

                                    DDCCBBAA NTNTNTNTT                                                 (6) 
Where the N’s are shape functions chosen as follows: 
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Boundary Conditions 
The boundary conditions may be written in terms of
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Where,  TBC = Back of core gas temperature.  
 
Approximate Numeric Form 
The heat-flow equation may be formulated in Galerkin’s form, the solution being obtained by specializing the general 
functional form to a particular function, which then becomes the approximate solution sought. 
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Where nr is the r component of the unit normal to the boundary and d is a differential arc length along the boundary. 
Equation (5) takes the form 
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The surface integral (boundary residual) now enables us to introduce the natural boundary conditions.   
Equation (9) can be written with respect to the nodal temperatures as   
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for i=A, B,C,D                                          
There are four such equations as (10) for the four vertices of the element. These equations when evaluated lead to the matrix 
equation   
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Where, [SR], [Sθ] are symmetric co efficient matrices, [ST] is the heat capacity matrix, [SH] is the heat convection matrix, [T] 
is the column vector of unknown temperatures, [R] is the forcing function (heat source) vector, [SC] is the column vector of 
heat convection, [T0] is the column vector of unknown (previous point in time) temperatures. 
 
Discretized Model for Fem Application  
The stator of an induction motor being static is prone to high temperature and the temperature distribution of the stator only is 
computed here. The hottest spot in the stator is generally in the copper coils. Thermal conductivity of copper and insulation 
are taken together for calculation. As the temperature is maximum at the central plane, the temperature distribution in the 
plane can be determined approximately by taking this as a two dimensional r-θ problem with the following assumptions 
stated here under. 

1) The temperature in the strip of unit thickness on the central axis is assumed to be fixed axially i.e no axial flow of heat 
is assumed in the central plane. This assumption is permissible because in the central plane where the temperature 
distribution is maximum, the temperature gradient in the axial direction is zero. 

2) The convection is taken care of only at the cylindrical surfaces neglecting the convection at the end surfaces. Because of 
this assumption the temperature calculated in the central plane will be slightly higher than the actual. 

In case of transient stator heating during DC Dynamic Braking i.e when DC is injected in the stator of an induction motor, the 
transient analysis procedure is able to provide an estimate of the temperatures throughout the volume of the stator during the 
transient period. Assuming that the motor is running initially under steady state condition with small amount of copper loss in 
the coil slots the equivalent AC current distribution in the stator during DC injection is calculated by equating the resultant 
amplitude of m.m.f produced by the DC and AC currents respectively. The temperatures within the volume of the stator are 
calculated at all nodal points for time intervals which ostensibly depend on the magnitude of equivalent AC current, cogently 
speaking  on  the  amount  of DC injected in the stator.  In this analysis  because of  symmetry the two dimensional domain in  
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Fig 3. Slice of armature iron and winding bounded by planes at mid-slot and mid-tooth divided into arch-shaped finite elements 
 

 
 

Fig. 4. Equivalent circuit of Induction Motor during DC Dynamic Braking 
 
cylindrical polar co-ordinate of core iron and winding, chosen for modelling of the problem and the geometry is bounded by 
planes passing through the mid-tooth and mid-slot, which are divided into finite elements. Arch shaped elements are used 
throughout the solution region. The angular difference between mid-slot and mid-tooth is denoted by 6α which is given as 5° 
(0.0872665 radian). Hence α turns out to be 0.01454 radian. 
 
Calculation of Heat Losses 
Heat losses in the tooth and yoke of the core are best on calculated magnetic flux densities (1.55 Wb/m2 and 1.14 Wb /m2 
respectively) in these regions, tooth flux lines are mostly radial while the yoke flux lines are mostly circumferential. The 
grain orientation of the core punching in these two directions influences the heating for a given flux density. Copper losses in 
the windings are determined on the length as well as area required for the conductors in the slot.  
The motor is braked for different values of direct current which is injected in the stator of the motor. Direct current range 
begins from 50 amps follows a step difference of 5 amps to reach 25 amps finally. The motor is braked from steady state 
condition after injection of these currents and the temperature rise during this braking phenomena is analyzed. 
During DC dynamic braking in a delta connected induction motor following the stator connection illustrated in fig .5, the 
equivalent AC current to the applied DC follows the formula 
 

dcdcac III  471.0
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Fig. 5.  Stator Connection Used for DC  Dynamic Braking (Delta) 
 
The maximum braking torque is given by  
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Here for 11 Kw Machine as per design, Xm =105.9 Ω & X2=2.78 Ω 
The retardation time (braking time) is given by  
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Since the motor is braked from steady state speed every time we inject varying values of DC current into the stator of the AC 
machine so, slip = s=0.04. 
Also, smax=0.308 & J= moment of inertia of load = 10 kg/m2. 
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To calculate stator current at different direct current this is injected in the stator of the motor. Thus the stator copper losses 
and the time required for dynamic braking calculated and tabulated in Table 1. 
 

Table 1. Different Values of Injected D.C Currents and its Equivalent A.C Counterpart along with its Corresponding Stator Copper 
Loss/Slot/ Unit Volume and Time Required for D.C Dynamic Braking 

 
Injected DC 
Current 
(Amps)IDC 

Equivalent AC Current  
(Amps) Iac 

Stator copper loss/slot/ unit volume (Watt/ 
m2 °C)       

 Braking Time       (tb) 
(seconds) 

50 23.57 0.001285 3.73 
45 21.21 0.001041 4.62 
40 18.84 0.000821 5.86 
35 16.48 0.000628 7.66 
30 14.13 0.000462 10.418 
25 11.77 0.000320 15.02 
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Convective Heat Transfer Co-Efficient [7,15] 
Two separate values of convective heat transfer co-efficient have been taken for the cylindrical curved surface over the stator 
frame and cylindrical air gap surface. The natural convection heat transfer co-efficient on cylindrical curved surface over the 
stator frame is taken as h= 5.25 Watt/ m2 °C. 
The heat transfer co-efficient on forced convection for turbulent flow in cylindrical air gap surface is taken as h=60.16 
Watt/m2 °C 
 
Thermal Constants [7,9] 
For a transient problem in two dimensions, the following properties are taken for each different element material. 
Thermal conductivity, radial direction, Vr Watt/m °C 
Thermal conductivity, circumferential direction, Vθ Watt/m °C 
Material Density, Pm kg / m3 
Material specific heat, Cm watt sec / kg °C 
 

Table 2. Typical Set of Material Properties for Induction Motor stator 
 

      Magnetic Steel Wedge Copper & Insulation 
Vr 33.070 2.007 
Vθ 0.8260 1.062 
Pm 7.86120 8.9684 
Cm 523.589 385.361 

 
Solutions are done for the two-dimensional stator structure with maximum permissible temperature and then calculating the 
heat transfer co-efficient at the mean of the temperatures as tabulated below in TABLE 3. 
 

Table 3. Typical Set of Material Properties for Induction Motor stator 

 
Conclusion 
The two-dimensional finite element transient analysis of the stator of an induction motor provides us with an opportunity to 
study the thermal profile of the stators of various ratings and types of induction motor. Together with the explicitly derived 
system equations as well as half bandwidth nature of symmetric matrices facilitate the solution of large problems.  
A new two dimensional finite element procedure in cylindrical polar co-ordinate using the arch shaped element functions has 
been used to find the approximate solution of temperature in different parts of a squirrel cage induction motor during braking 
via Direct Current  Injection in the stator  of the aforesaid induction motor. Though the above method provides approximated 
results but the cost effectiveness and quick nature establishes it as an effective method to obtain the visual picture of the 
thermal profile of the stator of an induction machine. The table which is given here under. 

1) Contain new, useable, and fully described information. For example, a specimen’s chemical composition need not 
be reported if the main purpose of a paper is to introduce a new measurement technique. Authors should expect to be 
challenged by reviewers if the results are not supported by adequate data and critical details. 

2) Papers that describe ongoing work or announce the latest technical achievement, which are suitable for presentation 
at a professional conference, may not be appropriate for publication. 

Node 
Number 

Temperature 
For IDC=50 
amps 

Temperature 
For IDC =45 
amps 

Temperature 
For  IDC =40 
amps 

Temperature 
For  IDC =35 
amps 

Temperature 
For  IDC =30 
amps 

Temperature 
For  IDC =25 
amps 

24 126.636 °C 126.207 °C 126.161 °C 126.089 °C 125.982 °C 125.813 °C 
25 127.530 °C 127.493 °C 127.438 °C 127.357 °C 127.239 °C 127.357 °C 
26 128.538 °C 128.316 °C 128.256 °C 128.256 °C 128.051 °C 127.874 °C 
27 128.763 °C 128.720 °C 128.720 °C 128.587 °C 128.483 °C 128.334 °C 
28 128.698 °C 128.682 °C 128.658 °C 128.622 °C 128.570 °C 128.488 °C 
35 127.515 °C 127.401 °C 127.257 °C 127.257 °C 126.846 °C 126.536 °C 
36 129.020 °C 128.904 °C 128.756 °C 128.565 °C 128.319 °C 127.987 °C 
37 129.990 °C 129.878 °C 129.729 °C 129.534 °C 129.280 °C 128.937 °C 
38 130.644 °C 130.495 °C 130.310 °C 130.082 °C 129.805 °C 129.456 °C 
39 129.273 °C 129.249 °C 129.210 °C 129.169 °C 129.118 °C 129.47 °C 



372  Sixth International Conference on Advances in Signal Processing and Communication – SPC 2017 
 
References 
[1] G. M. Jr. Rosenberry., “The transient stalled temperature rise of cast aluminium squirrel case rotors for induction motors”, AIEE 

Trans.Vol.PAS 7, 1955. 
[2] P.H. Mellor, D.R Roberts, and D.R. Tumer., “Lumped parameter thermal model for electrical machines of TEFC design”, IEE 

Proceedings B, Vol.-138, Sept. 1971. 
[3] K. Reichert., “The calculation of the temperature distribution in electrical machines with the aid of the finite difference method”,EGZ. 

A Bd. 90, H6, pp.137-142 , 1969. 
[4] C. E.  Tindall and S.Brankin.., “Loss-at-source thermal modeling in salient pole alternators using 3-dimensional finite difference 

techniques,” IEEE Trans. Magnetics, vol. 24, no.1, Jan. 1988. 
[5] R.W. Clough., “The finite element in plane stress analysis,” Proc. 2nd A.S.C.E. Conf on Electronic Computation, Pittsburgh,Pa., 

Sept.1960. 
[6] M.J. Turner, R.W. Clough, , H.C. Martin and L.J. Topp., “Stiffness and deflection analysis of complex structures”, J.Aero.Sci.,23, 

805-23,1956. 
[7] A.F. Armor and M. V. K. Chari., “Heat flow in the stator core of large turbine generators by the method of three-dimensional finite 

elements, Part-I: Analysis by Scalar potential formulation: Part - II: Temperature distribution in the stator iron,” IEEE Trans,Vol. 
PAS-95, No. 5,  pp.1648-1668, September 1976. 

[8] C.C. Hwang,  S. S. Wu and. Y. H. Jiang., “Novel Approach to the Solution of Temperature Distribution in the Stator of an Induction 
Motor” IEEE Trans. on energy conversion, Vol. 15, No. 4, December 2000. 

[9] A. F. Armor., “Transient Three Dimensional Finite Element Analysis of Heat Flow in Turbine-Generator Rotors”, IEEE Transactions 
on Power Apparatus and Systems, Vol. PAS 99, No.3 May/June. 1980. 

[10] J. Nerg., “Thermal Modeling of a High-Speed Solid-Rotor Induction Motor”   Proceedings of the 5th WSEAS International 
Conference on Applications of Electrical Engineering, Prague, Czech Republic, March 12-14, 2006 (pp90-95). 

[11] K. H. Huebner, E. A. Thorton and T. G. Byrom., “The Finite Element Method for Engineers”, Third ed: John Wiley & Sons, 1995.  
[12] L. J. Segerlind., “Applied Finite Element Analysis”, Second ed: JohnWiley & Sons, 1984. 
[13] M.S. Rajagopal, D.B. Kulkarni, K.N. Seetharamu, and P.A. Ashwathnarayana.,“Axi-symmetric steady state thermal analysis of totally 

enclosed fan cooled induction motors using FEM”, 2nd Nat Conf.on CAD/CAM,19-20 Aug,1994.  
[14] M.S. Rajagopal, K.N. Seetharamu and P.A. Ashwathnarayana., “Transient thermal analysis of induction Motors , IEEE Trans 

,Energyconversion, Vol.13, No.1,March1998. 
[15] D. Sarkar, N.K. Bhattacharya., “Approximate analysis of transient heat conduction in an  induction motor during star-delta starting”, 

in Proc. IEEE Int. Conf. on industrial technology (ICIT 2006), Dec., PP.1601-1606. 
[16] L.L. Bhirud., “Matriix operations on the computer”, Bombay, Oxford & IBH   Publishing Co., 1975. 
[17] Ramon Mujal-Rosas.,”Analysis of the three-phyase induction motor with spiral sheet rotor” IJEPES –Volume 35, page 1-9, Feb 2012. 
[18] E. Dlala.,”Comparison of models for estimating magnetic core loses in electrical machines using the finite element method”, IEEE 

Transactions on Magnetrics, 45(2):716-725, Feb.2009. 
 

 

 

 

 

 


